An Overview of Radiation Processing Industry and Commercialization in Malaysia

> Dato Dr. Muhamad Lebai Juri Director General Malaysian Nuclear Agency Ministry of Science, Technology and Innovation

Content of Presentation

- Introduction of Radiation Processing Technology
- Infrastructure and Facilities to Support R&D&C
- R&D Activities at Nuclear Malaysia
- Process of Commercialization of R&D Outcome

Introduction: Radiation Processing Industry in Malaysia

Gamma Operator	Capacity	Installation	Application
Ansell	400	1977	Medical product
Steriligamma	800	1993	Sterilization
ISOTRON	400	2001	Sterilization

EB Operator	Power/MeV	Installation	Application
Sumitomo	0.25, 0.8 & 2.0	1995 & 2001	Electronic Wire
Cryovac (M) Sdn. Bhd.	0.55	1996	Packaging Film
S.K. Polymer	0.15	1997	Packaging Film
Meditop Corporation	10	n/a	Medical Product
Electron Beam Sdn. Bhd.	10	2009	Medical Product
Continental Sime Tyre	0.3	n/a	Tyre

Note: All radiation facilities used for services and in house product

Radiation Processing Technology Division of Nuclear Malaysia

- Established in 1990. Known as Radiation Processing Program
- Vision: A Referral Centre for Radiation Processing Technology
- IAEA Collaboration Centre/CoE
- Task: To promote radiation processing technology through R&D and transfer technology or product to private sector for commercialization

Enablers for R&D and Process of Commercialization

- Human Resources Capability
- R&D and Pre-Commercialization Funding
- Laboratory Facility
- Radiation Facility
- Collaboration with Industry for Technology Transfer

Human Resources and Capability

- 27 research officers in various field and expertise (8PhD, 12MSc and 7 BSc);
- To enhanced R&D activity (2013), Co-supervision 13PhD, 20MSc and 34 BSc students from local university
- As IAEA Collaboration Centre (CoE), Nuclear Malaysia received fellow from IAEA/SEA region/Middle East
- Training Programs for local/foreign scientists

International Recognition

IAEA Collaborating Centre in Radiation Processing of Natural Polymer (2006 – 2009)

IAEA Collaborating Centre in Radiation Processing of Natural Polymer & Nanomaterial (2010 – 2014)

Radiation Processing of Natural Polymer and Nanomaterials

GOVERNMENT SUPPORT R&D&C

SCIENCE FUNDS	TECHNO FUNDS	CRDF SMF
 laboratory scale 2 - 3 years RI and Univ. only 	 pilot scale - developmental stage requested by industry must have Univ. or RI partners Grants Incubator system 	 commercialization marketing matching grants (1:1) Requested by industry

R&D Budget on Radiation Processing

- **Development Fund under RMK9** for 5 years: RM10 mil for R&D, procurement of analytical equipment and establishment of nano laboratory
- Science fund budget from Ministry of Science, Technology and Innovation
 - 2011 RM923,685.00 (USD286,858.70) for 9 projects
 - > 2012 -RM1,400,835.00 (USD435,041.93) for 15 projects
 - 2013 RM1,347,923.40 (USD418,609.75) for 17 projects
- IAEA/CRP budget for 3 projects: Total Euro 13,000.00 per year for 3 years (2011 2013).
- <u>IAEA TC Project MAL/1010</u>, Development of green materials and processes using ionizing radiation and nano materials for environmental remediation, 2012 - 2013 (budget for 2013, Euro 33,000.00)

```
Exchange rate 1USD = RM_{3.22}
```

Commercialization Budget

<u>Techno fund (Pre-commercialization)</u>

- Pilot Production of Wound Management Products From Water-soluble <u>Chitosan</u> Derivatives For Pre-clinical, Clinical and Market Evaluations. Collaboration with SIRIM Bhd. and University Science Hospital. Total fund: RM3.9M (USD1,218,750.00), Dec. 2009 –Dec. 2012
- Pilot Plant of Production of Flame Retardant Wire and Cable. Collaboration with Wonderful Compound. Total fund: RM3.oM (USD931,677.00) Aug 2009 until June 2010
- Pilot plant <u>Bio-Plastic Packaging</u>. Collaboration with Zylon BioPlastic. Total fund: RM1.325M (USD414,062.50) Oct. 2007 until Sept. 2009

Commercialization of Research Development Fund (CRDF)

Sago Hydrogel for Wound Dressing and Face mask. Collaboration with Rumbia Bio-Tech Sdn. Bhd. RM1.67 M (USD521,875), 2009 -2011

Laboratory Facilities

Polymer processing laboratory

Melt blend mixers, hot & cold press, melt flow indexer, temp controlled two roll mill, three roll mill, injection molding machine –table top, etc

Polymer Characterization

- tensile machine, impact tester, hardness tester, scratch and abrasion tester, tackiness tester, etc.
- DSC, DMTA, TGA
- FTIR, Real Time FTIR
- GPC, HPLC, SLS
- SPM, TEM
- Nanophox
- Zeta potential etc.

Nano Laboratory

Scanning Probe Microscope

Asymmetric Flow Field Flow Fractionation (AF4)

Dynamic Light Scattering

Electrospinning – Nano Fiber

Device for synthesis of nanomaterials

Nano Mizer – Nano particle/gel

Chemical Vapor Deposition - Carbon Nano Tube (CNT)

Characterization of Nano Materials

Transmission Electron Microscope (TEM)

Zeta Potential

Vibration Sample Magnetometer

Vector Network Analyzer (VNA)

Gel Permeation Chromatography

Pilot Plant Facility to Support R&D and Commercialization Process of R&D Outcome

- Pilot plants for <u>Prove of Concept</u>, <u>Feasibility Study</u>, <u>Product Development</u> and <u>Demonstration Facility</u>.
- Continuous flow gamma irradiation (RAYMINTEX) for <u>vulcanize rubber latex</u> and oligochitosan production
- Electron beam radiation facility for <u>crosslink wire, cable,</u> <u>tube</u> and <u>hydrogel</u>
- <u>Thermoplastic processing</u> for compounding, composite, wire and molding of polymer
- Synthesis of resin epoxy palm oil acrylate, butyrate and over print varnish from palm oil

RAYMINTEX Gamma Facility

Gamma Radiation Chamber

Latex/Chemical Tanks

Pumping system

Radiation Column

Pilot Plant for Crosslinking Wire, Cable and Tubing

ALURTRON: Electron beam accelerator, 3.0 MeV, 90kW with handling facility for research and continuous irradiation of wire and shrinkable tubes

Pilot Plant Synthesis of Resin from Palm Oil

Pilot Plant Thermoplastic /Natural Polymer Processing

Radiation Facilities Supporting the R&D

Gamma and electron beam

- Sinagama, Co-60 plant with design capacity ~ 2.0 MCi for sterilization
- <u>Raymintex</u>, Co-60 plant with design capacity of 1.0 MCi for liquid irradiation
- Electron accelerator, EPS3000, 3.0 MeV, 90kW
- Electron accelerator, 1.0 MeV, 50 mA.
- Curetron, 200 keV, 4kW
- UV irradiation system, 120 Watt/cm2
- High powered UV- fusion lamp

Radiation facilities to support R&D and provide radiation service for commercialization.

Irradiation Facilities at Nuclear Malaysia

Gamma Radiation Facility Commercial & Research Loop

Low Energy EB 200KeV (Curetron) and UV line

Continuous Flow Gamma Radiation Vulcanize Rubber Latex

Commercialization of Nuclear Malaysia Radiation Processing R&D Outcome

Commercialization of Sago Hydrogel for Health Care Application

Bio Essence from Biodiversity

Technology Platform Sago Hydrogel as CARRIER of Bio Essence from the BIODIVERSITY

Rumbia Bio-Tech Pilot GMP Cosmetic Certified Plant: Production of Starch Hydorgel at Nuclear Malaysia Technology Park

Extraction Sago starch

Mixing Sago Gel

Coating Sago Gel

Health Care Sago Hydrogel

Crosslink Process Sago Gel

Packaging

EB Processing: Crosslinking and Sterilization

Product facial mask sago starch hydrogel is being irradiated for crosslinking and sterilization processes.

Product pass under EB scanner for crosslinking and sterilization at 25KGy

Products outside EB irradiation chamber prior for irradiation

Sago Starch Hydrogel

Early Stage **Evaluation** Product Performance

Rumbia Future Potential

Before

After

ACNE Treatment

Before

R&D Seminar 26 - 28 Oct. 2012

Testimonial Patient Proven Sago Hydrogel Performance

18th Day

SAGO Hydrogel on Infected Burned Wound

Without Anti Biotic

Serious Electrical Burnt Patient 15 Days after Application of SAGO Hydrogel

RAYMINTEX Gamma Facility

Gamma Radiation Chamber

Latex/Chemical Tanks

Pumping system

Radiation Column

Commercialization of Rubber Vulcanize Natural Rubber Latex (RVNRL) Finger Coat

Manufacturing of RVNRL

Year	Production (Kg)	Company
2006	27,325	2
2007	35,847	2
2008	27,310	2
2009	31,430	2
2010	72,500	2
2011 (until August)	49,140	2

Pilot scale production of plant growth promoter oligochitosan by RAYMINTEX continuous flow gamma facility

- Chitosan extract from shrimp shelves
- Production of oligochitosan as plant growth promoter in agriculture application such as rice, gaharu, pineapple and banana

Mixing tank

Storage tank

Commercialization of Chitosan Derivative for Wound Dressing

Products pass clinical evaluation in collaboration with Hospital of National University and University Science funded by Ministry of Science, Technology and Innovation

Clinical Test on Chitosan Derivative Sheet and Paste

Sheet

Day 10

Day o

Day o

Day 21

Day 27

Commercialization of Heat Shrinkable Tube

Break Lining Tube

Pilot Plant Facility Processing Shrinkable Tube

Facility production of shrinkable tube at factory of collaborator

Handling system of EB radiation for tube and wire

Wonderful Compound

FOR AUTOMOTIVE

• ELV-4 WUBHS (wire under beam handling system)

PRODUCTION OF GREEN OR ECO-FRIENDLY COATINGS AND OVERPRINT VARNISHES FROM RADIATION CURABLEPALM OIL BASED RESINS

UV curing process of overprint varnishes (OPV)

Pressure Sensitive Adhesive (PSA)

Printing inks

UV curable floor panels

Overprint Varnish (OPV) from EPOLA

UV curing process of OPV based EPOLA at Ijima Industries Sdn Bhd

Production of

coating material

resin from oil palm

Signing and exchange of Supply Agreement between Nuclear Malaysia and Ijima Industries Sdn Bhd – To supply overprint varnish (OPV)

* Production: 200 kg/month Market Demand: 1500 – 2300 kg/month

Pilot Plant of 150 liters Reactor Synthesis (EPOLA, POBUA and OPV)

Pilot plant of radiation (UV/EB) curable palm oil (PO) based resins (epoxidise palm oil acrylate (EPOLA) and palm oil based polyurethane acrylated (POBUA) can be utilized to produce green or eco-friendly coatings, pressure sensitive adhesives (PSA), printing inks and overprint varnishes (OPV).

UV curing

Biodegradable Packaging

Ministry of Science, Technology and Innovation

BIOFOAM INNOVATION & PROCESS

From Natural to Nature Through High-tech Process

Saao Tree

Biofoams

Extruder Irradiated Sago Powder

BIOFOAM

For more information kindly contact-Dr. Zukatli Ghazai, zukatli amint.gov.my Radiation Processa Division, Malaysian Inst Jule for Nuclear Technology Reserved. (Jr. Hi), Sangi, 43000 Kajang, Selangor, MALAYSIA Technology Reserved. (Jr. Hi), Sangi, 43000 Kajang, Selangor, MALAYSIA Technology Reserved. (Jr. Hi), Sangi, 43000 Kajang, Selangor, MALAYSIA Technology Reserved. (Jr. Hi), Sangi Kajang, Sangi Kajang, Malaysia Reserved. (Jr. Kajang), Sangi Kajang, Sangi

BIO-FILM MARKET

For more information kindly contact: Dr. Aukatti Ghasati, aukatti siminti gov.my Radiation Processing Division, Molaysian Institute for Nuclear Technology Beerscher (MUR), Barry, 43000 Kajang, Sangari, MALAYSA. Tel: - 603 - 8925 0510 Fax - 603 - 8920 2965

Biodegradable Films

Excellent Clarity/Transparency

Prototype: Chocolate Tray

Radiation Crosslinkable Thermoplastic Elastomer (TPE) from Waste Rubber

PREPARED BY

Revocomm Technologies Sdn Bhd

Partners

Research & Development

Technology Recognition / Project Funder

5 June 2014

Products Thermoplastic Elastomer (TPE) Waste Rubber

TPE Rubber enables its customers to: Advantage..

- \square TPE materials have the potential to be <u>recyclable</u> since they can be molded, extruded and reused like plastics,
- ☑ TPE also require little or no compounding, with no need to add reinforcing agents, stabilizers or cure system
- TPE rubber consumes less energy and closer and more economical control of product quality is possible

Disadvantage

- TPE relative to conventional rubber or thermoset are relatively high cost of raw materials, general inability to load TPEs with low cost fillers, such as <u>virgin rubber</u>
- ☑ The two most important manufacturing methods with TPEs are <u>extrusion</u> and injection molding, high machine cost.

ARTIFICIAL BAKAU PILE COMMERCIALIZATION:

THE PROSPECTS

The Product:

Artificial Bakau Pile is an alternative method for soil erosion protection systems which has been developed to protect or reduce river bank scouring, coastal line erosion and other types of soil erosion. The hydrodynamic design of the product incorporates interlocking systems for effective resistance and barrier against the scouring effect of river current.

The material:

Artificial Bakau Pile are constructed from a green material known as wood polymer composites which consists of natural wood fiber as the major reinforcing components.

The Technology: comj The technology to produce and application of Artificial Bakau Pile are a hybridization of conventional and advanced polymer processing which utilizes existing Profile Extrusion Technology and advanced Compaction Extrusion Systems.

Prepared by : Faizal

Failure & Disadvantages of Natural Mangrove (Bakau) Piling

PROPOSAL FOR NEW BLUE OCEAN STARTEGY INITIATIVE (NBOS):

DEVELOPMENT OF MODULAR FLOATING CAGE FROM NANOHYBRID BIOCOMPOSITE MATERIAL FOR AQUACULTURE APPLICATION (FISH FARMING)

Prototype D<u>esign & Mould Deve</u>lopment

Before

Radiation sterilisable PVC compounds for medical products

Gold Medal & Best of the best– 34rd International Exhibition of Inventions New Techniques and Products Geneva, Switzerland, 6-10 April 200

Tubing for dialysis, endotrachaea, feeding and pressure monitoring

Conclusion

- Radiation processing industry in Malaysia is growing at encouraging pace;
- Nuclear Malaysia role is to disseminate information and promote radiation processing technology capability vis-a-vis to conventional technology;
- Infrastructure, laboratory, pilot and irradiation facility at Nuclear Malaysia will enhance R&D activity and commercialization of radiation processing; and
- Successful commercialization of R&D finding could be achieve through collaboration and transfer technology to industry, and financial support from government and private sectors

MALAYSIAN NUCLEAR AGENCY MINISTRY OF SCIENCE, TECHNOLOGY AND INNOVATION (MOSTI)